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Polaritons in Confined Systems 
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polaritons in confined systems are introduced and their dispersion is calculated. 
The amount of squeezing of confined excitons-polaritons in GaAs quantum 
wells is evaluated. 
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1. I N T R O D U C T I O N  

The quantum mechanical description of radiation propagat ion in a 
polarizable medium through polaritons is well known since the work by 
Hopfield. t~) The dispersion curves of these excitations as well as their role 
in the description of radiat ion-mat ter  interaction in solids have been widely 
discussed both theoretically and experimentally (e.g., refs. 2). Recently 
the statistical properties of polariton states in a bulk crystal have been 
studied TM and it has been shown that polariton states exhibit intrinsic 
squeezing properties. As we shall see, this means that the variance of a 
linear combinat ion of polariton amplitudes is smaller than hi2. This effect 
is well known from quantum optics, where it has been observed for the 
radiation field. One interesting feature of polariton squeezing is that  it 
is intrinsic to the polariton, being a consequence of the transformation 
from free photons  and excitons (or phonons)  into polaritons, c3~ For  bulk 
polaritons this effect may be relevant either for phonon-polar i tons  or for 
exciton-polari tons in materials like alkali halides, where the coupling may 
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be large. It is of some relevance also in confined quantum systems because 
of the stronger localization of the exciton. Furthermore, the polariton effect 
in a confined system strongly differs from that in the bulk; in particular 
polaritons show a characteristic radiative lifetime depending on the energy 
of the photons which interact on the quantum system. 

Polaritons in confined systems like quantum wells or quantum wires 
have already been considered in the literature both from a classical ~4) and 
from a quantum mechanical viewpoint. 15) In this paper we present a unified 
description from which the classical and the "quantum mechanical results 
follow and which allows predictions about the statistical properties of the 
polaritons in quantum wells. 

2. DISPERSION OF THE POLARITONS 

Here we consider the interaction between photons and excitons in the 
confined system with the Hamiltonian discussed in ref. 5, which describes 
the interaction of a quantized electromagnetic field with a quasi-two- 
dimensional polarizable medium. The medium is strongly confined in the 
growth direction (z direction) and behaves like a two-dimensional crystal 
in the transverse direction. The Hamiltonian reads 

H=~ 2 + 2 A I  + A I  hf2JqAq Aq--~ Z h i ) I Q I  " ' O , : - " Q , : ,  
q Q.2 

+ E c fA -, 2, , , ,  - Aq )(AQj + A Q,a) 
Q;2 

+ ~ C a C~.'.tat + A  ~+ ~tA L + t+ Q Q',"Q'.:.' -Q'.:.',, o.z a-o.:.) (I) 
Q',Q,2,2' 

where A2q+ and A~ are the creation and annihilation operators of the two- 
dimensional excitons, q is the component of the wave vector Q perpendicular 
to the z direction, and k= is the componcnt of Q in the z direction. A~q + and 
A~ are thc field operators. The coupling constants arc defined as 

,._ ,. :.. = (  2r~hv'~ '/z l l fL/2 . 

CQ--Cq'k:=C-q'-k: \ L '  IQIJ ~ -t/2 dz P(z) e'k: 

(2) 

where v = c/x /"~ is the velocity of light in the medium, Wq = o9 0 + yq2 is the 
- -  I 1 + 1 + exciton frequency, A~,:. - Aq.,:.:., and A -o.a = A -q.-k:.~. 

The electromagnetic field has been quantized inside a box of dimension 
L' with periodic boundary conditions. The coupling constant is derived 
from a phenomenological model for the exciton in a quantum well and we 
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have included the A 2 term which was neglected in ref. 5. It will turn out to 
be important in order to give the correct behavior of the polariton disper- 
sion for q ~ 0. For simplicity we consider only one polarization for the field 
and diagonalize the Hamiltonian using the transformation 

i+ A 2+ (3) B', = E W,(k=. q) A~.k: + X,(q) A~ + ~ Y,(k.. q) A - , . -k :  + Z,(q)  _, 
k: k: 

where l indicates the polariton mode. 
We consider now the limit L ' ~  o0; in this case l becomes a con- 

tinuous index which will be omitted in the following. Furthermore we 
define the L'-independent coupling constant ICq.k.I 2 x 2 = I f q , k : l  L'/2n. The 
polariton operators B~q will be denoted by Bq(/2) and the coefficients of the 
transformation (3) are in this limit 

o~-/2 X(q) (4) 
Z(q) - OOq + 12 

1 1/22 -- i 2c% v 
W(k=,q)= h COq+/2 IQI_o  +M6(v2Q2-/22) ~qqC~.kX(q) (5) 

v IQI - 1"2 
Y(k:, q) - v [QI + /2  W(k~, q) (6) 

where X(q) is determined from [Bq(~Q), Bq(/2') + ] = 6 ( / 2 - / 2 ' )  and M will 
be determined later from the dispersion. Here /2  is the polariton frequency. 
We distinguish between two different frequency regions, i.e., the lower and 
the upper polariton. 

For /2(q)  < v(k~ + q2)1/2 the delta function in (5) vanishes. In this case 
the consistency condition for the ti'ansformation (3) leads to the eigenvalue 
equation 

4(.Oq/22 f V IQI 
J v 2 r-- /22 hCq.kJ 2 dk :0 (7) 

which defines the lower polariton. Its dispersion curve is presented in Fig. 1 
and does not differ much from the one for the bulk polariton. Notice that 
the dispersion curve for the lower polariton starts at q = 0 and coincides 
with the one obtained from the classical approach, t4~ This behavior is a 
consequence of having included the A 2 in the Hamiltonian and was not 
considered in the previous quantum approaches, c5~ where the dispersion 
curves started at q :/: 0. 
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Fig. 1. Dispersion curve of the lower polariton in a GaAs quantum well of 60 ~, width. The 
polariton frequency t2 is normalized with respect to the exciton frequency ~o o, the wave vector 
is normalized with respect to k o = OJo/V. The material parameters are defined in the text. 

For  Q(q) >>. v(k2: + q2)1/2 the term propor t ional  to the delta function in 
(5) may be different from zero and the quanti ty M is determined from the 
consistency condition for the t ransformation.  It reads 

M (f2z ., 4Ogql22 v 2 IQI 2-~2zv[QI ) = - - ~q + - ~ "  09--~ Y It~q'k-l= dk: 

(2wq f2 z f "~ - '  
x ~.2 .--72 IC, k Za(vZQa-122)dk:  (8) 

\ h  WqJ : ] 

We call the excitations which are present in this energy region upper  
polari tons al though they differ from the bulk upper  polari ton as we will see 
later. The coefficient X(q) in the t ransformat ion (3) is determined from the 
c o m m u t a t o r  [B4(Q ), Ba(I2' ) + ] = 6(I2 -- 12'), and we obtain 

2 
iX{q)+ Zcqll2 = 1 wq F 

n ~2 2 R 2 + F 2 (9a) 

where 

1 ( 4~oq~2f  vhQ] ) 
- -  (/) q "J- ~-"~-- . '~'2 /)2 I ~'~q,k.] dk.. (9b) R = - -  ~2 2 2 

h ~OqJ I Q I 2 - f 2  2 " 

The right-hand side of this expression shows the typical Lorentzian 
behavior  with a linewidth defined as 

27zQ 3 
F =  h2afl q f It~q,k:l 2 6(v2Q 2 - f 2 2 )  dk; (~o) 
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This expression coincides with the classical and quantum linewidth as dis- 
cussed in refs. 4 and 5, respectively. In the quantum well, states with zero 
linewidth correspond to two-dimensional polaritonlike excitations in the q 
plane, i.e., the lower polariton. 

Frequency f2 and linewidth F defining the upper polaritons may be 
interpreted as the solution of a Fano-like problem in which the exciton state, 
for a fixed value of q, corresponds to the discrete state. The continuum is 
related to the k~ component of the wave vector of the electromagnetic field 
for fixed q. In contrast to the bulk case, the upper polaritons have a con- 
tinuous energy spectrum. However, they are characterized by a resonance 
near the exciton energy which is obtained from the equation M = 0  and 
which coincides with the classical resonance of ref. 4. We can interpret this 
resonance in our scheme as follows: consider the mean value of the polariton 
number operator in a one-exciton state as a function of the polariton energy. 
Its expression is given by 

(B~-(t2) Bq(t2)> = IX(,)I 2 + IZtqll 2 + (L'/2n) I I Y(k=,qll2 dk= 

= 2h"Q \ 2~ ;  + ' -7~ '4Jh2- - - )2dk :oJ  

x ~ dk= ICq.k.12&(u2Q2-f22)[M2+4rc2~ 2] 
(t)q 

(I1) 

and its maximum is found when M = 0. Therefore this condition gives the 
maximum number of upper polaritons which are compatible with a given 
exciton state. 

The lower and the upper polaritons can also be introduced through 
the retarded Green's function for the exciton, as can be shown defining the 
inverse of the transformation (3) and expressing the time evolution of the 
exciton and photon operators through that of the polariton operators 
whose eigenfrequencies are known. A particular upper polariton is defined 
by the resonance of the Green's function for M = 0 .  This particular 
potariton mode is the counterpart of the upper polariton in the bulk. The 
analogous treatment for the Fano model is discussed in ref. 6. 

3. STATISTICA'L PROPERTIES 

The transformation (3) allows us to construct the polariton states 
out of the product of free particle states and we give some indications 
on the quantum statistical properties of polaritons in a confined system. 
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Here we discuss one of these properties: polariton squeezing. This prop- 
erty is introduced through the analogy with squeezing for a harmonic 
oscillator described by the operators At and A~-. Consider its so-called 
"in-quadrature" component d, = (A t + A ~)/2 and its "in-phase" compo- 
nent d2 = (A 1 - A ~ )/2i. In a coherent state the product of the mean values 
of the variances of this quantity is Adl zld2 = 1/4. A squeezed state is 
characterized by Ad~ zldz/> 1/4 but zld~ < 1/2 or Ad2 < 1/2. This implies 
that for one component of the amplitude of the electromagnetic field the 
noise is reduced below the quantum limit. Here we show that this effect is 
also present for polaritons in confined systems as an intrinsic property. We 
introduce the quantities 

d, =2~-- ~ [~. + 8_ .  + B+_. + B~ - ] (12a) 

d2=~ai/z [ Bq + B _ q -  B+_q- B~ ] (12b) 

and as an example we evaluate the variances in the exciton-photon 
vacuum 10>. This leads to the result 

((Ad2)2) -- (01 (Ad2) 2 10) 

=14 I / (q)12+ IX(q)/2+2-~ dk~ {IW(k~,q)[2 + IY(k:,q)l 2} 

l L' 
- - ~ R e X I q l Z I q ) - ~ R e ~ l d ~  WIk~,ql r ( -k~ ,  - q l  (13) 

/-. Z. ~7"s ,,; 

We have calculated (13) for the lower polariton in a GaAs quantum well 
with a width L = 60/~. Cavity and quantum well have the same dielectric 
constant e = 12 and an exciton energy of 1.6 eV. We also use the relation 
IlacvL 2 IF(O)J2/h =fe2/2mOgo between the oscillator strength f and the quan- 
tity used here; the value of f = 3 6 x  10 -5 /~-z  is taken from ref. 4. The 
result is presented in Fig. 2 in terms of the quantity 

I' ,00 (14) 

One obtains an amount of squeezing of about 0.06 %, which is small, but 
larger than in the bulk case t3~ as a consequence of a larger oscillator 
strength of the confined exciton. For the upper polariton squeezing is 
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Fig. 2. Squeezing percentage zl,q of the d 2 operator for the lower polariton in a GaAs 
quantum well of 60 ,~ as a function of the normalized wave vector q/ko with ko = oJo/v. The 
material parameters are defined in the text. 

de f ined  in the  s a m e  way.  H e r e  we h a v e  e v a l u a t e d  the  s q u e e z i n g  for  a q u a n -  

t u m  well  in a n  in f in i te  cav i ty ;  the  effect s h o u l d  be  m e a s u r a b l e  in real is t ic  

cav i t ies  of  f ini te  l e n g t h  a n d  ref lec t iv i ty  c lose  to  one.  
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